## LESSON 3.4b

**Analyzing the Discriminant** 

### Today you will:

- Analyze the *discriminant* to determine the number and type of solutions
- Practice being a math translator

### **Core Vocabulary:**

- Discriminant, p. 124  $b^2 4ac$ 
  - ...the stuff *inside* the square root...
- Tells us the number and type of solutions to the quadratic equation.

#### The Discriminant

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
 the *Discriminant*

## The Discriminant tells us the number and type of solutions

Number: two, one or none

Type: real or imaginary

| Value of discriminant        | $b^2 - 4ac > 0$    | $b^2 - 4ac = 0$   | $b^2-4ac<0$             |
|------------------------------|--------------------|-------------------|-------------------------|
| Number and type of solutions | Two real solutions | One real solution | Two imaginary solutions |
| Graph of $y = ax^2 + bx + c$ | X X                | X X               | X                       |
|                              | Two x-intercepts   | One x-intercept   | No x-intercepts         |

Find the discriminant of the quadratic equation and describe the number and type of solutions of the equation.

**a.** 
$$x^2 - 6x + 10 = 0$$

**b.** 
$$x^2 - 6x + 9 = 0$$

**c.** 
$$x^2 - 6x + 8 = 0$$

### SOLUTION

| E | a | u | a | ti | 0 | n |
|---|---|---|---|----|---|---|
| _ | ч | • | • | •  | • |   |

$$ax^2 + bx + c = 0$$

$$b^2 - 4ac$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

**a.** 
$$x^2 - 6x + 10 = 0$$

$$(-6)^2 - 4(1)(10) = -4$$

Two imaginary: 
$$3 \pm i$$

**b.** 
$$x^2 - 6x + 9 = 0$$

$$(-6)^2 - 4(1)(9) = 0$$

**c.** 
$$x^2 - 6x + 8 = 0$$

**c.** 
$$x^2 - 6x + 8 = 0$$
  $(-6)^2 - 4(1)(8) = 4$ 

# Find a possible pair of integer values for a and c so that the equation $ax^2 - 4x + c = 0$ has one real solution. Then write the equation.

### SOLUTION

In order for the equation to have one real solution, the discriminant must equal 0.

$$b^2 - 4ac = 0$$

Write the discriminant.

$$(-4)^2 - 4ac = 0$$

Substitute -4 for b.

$$16 - 4ac = 0$$

Evaluate the power.

$$-4ac = -16$$

Subtract 16 from each side.

$$ac = 4$$

Divide each side by -4.

Because ac = 4, choose two integers whose product is 4, such as a = 1 and c = 4.



**ANOTHER WAY** 

Another possible

equation in Example 5 is

obtain this equation by letting a = 4 and c = 1.

 $4x^2 - 4x + 1 = 0$ . You can

So, one possible equation is  $x^2 - 4x + 4 = 0$ .

**Check** Graph  $y = x^2 - 4x + 4$ . The only *x*-intercept is 2. You can also check by factoring.

$$x^{2} - 4x + 4 = 0$$
  
 $(x - 2)^{2} = 0$   
 $x = 2$ 



### **Solving Real-Life Problems**

The function  $h = -16t^2 + h_0$  is used to model the height of a *dropped object*.

h is the height (in feet) at time t (in seconds).

The starting height is  $h_0$ .

If the object is *launched or thrown*, an extra term  $v_0t$  is added. The initial vertical velocity is  $v_0$  (in feet/sec).

$$h = -16t^2 + h_0$$
 dropped object

$$h = -16t^2 + v_0 t + h_0$$

 $h = -16t^2 + v_0t + h_0$  launched or thrown object

Affect of  $v_0$ :

If  $v_0 < 0$  then object is falling/angling down

If  $v_0 > 0$  then object is climbing/angling up

If  $v_0 = 0$  then object is falling straight down

A juggler tosses a ball into the air. The ball leaves the juggler's hand 4 feet above the ground and has an initial vertical velocity of 30 feet per second. The juggler catches the ball when it falls back to a height of 3 feet. How long is the ball in the air?

### SOLUTION

Because the ball is *thrown*, use the model  $h = -16t^2 + v_0t + h_0$ . To find how long the ball is in the air, solve for t when h = 3.

$$h = -16t^2 + v_0t + h_0$$
 Write the height model.  
 $3 = -16t^2 + 30t + 4$  Substitute 3 for  $h$ , 30 for  $v_0$ , and 4 for  $h_0$ .  
 $0 = -16t^2 + 30t + 1$  Write in standard form.

This equation is not factorable, and completing the square would result in fractions. So, use the Quadratic Formula to solve the equation.

$$t = \frac{-30 \pm \sqrt{30^2 - 4(-16)(1)}}{2(-16)}$$

$$t = \frac{-30 \pm \sqrt{964}}{-32}$$

$$t \approx -0.033 \text{ or } t \approx 1.9$$

$$a = -16, b = 30, c = 1$$
Simplify.

Use a calculator.

▶ Reject the negative solution, −0.033, because the ball's time in the air cannot be negative. So, the ball is in the air for about 1.9 seconds.

# Homework

Pg 127 #19-59 odd, 69